
Formal Expression of BBc-1Mechanism
and Its Security Analysis

Jun KURIHARA† and Takeshi KUBO††

†kurihara@ieee.org
††t-kubo@zettant.com

October 31, 2017

1 Introduction
Bitcoin and its core database/ledger technology Blockchain [1] have been capturing
both industries and academia by its sophisticated architecture to guarantee trust and
unforgeability of data records with no central authority. It has been enormously in-
vestigated as an alternative to the current centralized database system and a potential
technology of new type of future information technology services.

As mentioned at the head of this section, Blockchain was proposed as a building
block of a cryptocurrency Bitcoin. Hence, in the case where we use Blockchain as
just a trusted database, participants of a Blockchain instance must follow unreasonable
policies of Bitcoin with undesirable resource consumption, e.g., mining, even if it is
completely unnecessary. Observing such facts, Saito et al. introduced a new distributed
unforgeable database/ledger called Beyond Blockchain One (BBc-1) in 2017 [2] as
a skeleton over which new kind of applications can run.

The design principle of BBc-1 is to guarantee only the following one statement:
“any information must be registered in such a way that users can authenticate the
information itself and its registrant.” This means that verification of both registered
information and registrants is simultaneously enabled through BBc-1.

Our aims of this paper are (1) to formally define the flow and mechanism to register
the data to an instance of BBc-1; (2) to analyze the security of BBc-1 and show its both
advantages and disadvantages (restrictions); and (3) to provide a design hint/guideline
for applications considering the above (dis)advantages. Here we should emphasize that
BBc-1 was designed so as to provide just a simple skeleton, and that the restrictions of
BBc-1 itself should be treated in the application layer according to its desired security
level and design principle.

2 Formal Expression of Transaction in BBc-1
2.1 Basic Flow to Generate Transaction Data
In this subsection, we give several definitions and formally describe the mechanism of
BBc-1. Basically, BBc-1 can be viewed as a function to generate data objects called

1

kurihara@ieee.org
t-kubo@zettant.com

transaction data and register them to the network nodes in a distributed manner. Here
we simply call by a transaction a operation to generate a transaction data object, and
note that one transaction generates only one transaction data.

First, without loss of generality, we suppose that every transaction in the world of
BBc-1 can be serialized in chronological order, and an integer i > 0 is regarded as the
universal indicator that indexes the i-th transaction. Let Φi represent the i-th unique
transaction that takes a set of data blocksAin,i and newly generates another setAout,i

as follows.

Ain,i
Φi
7−−→ Aout,i,

where Ain,i and Aout,i are called sets of assets. We should note that objects in Ain,i

are ones generated by past transactions Φj’s (0 < j < i), and that objects inAout,i will
be taken by future transactions Φk’s (k > i). Also note that Ain,i could be an empty
set if Aout,i is a set of newly produced assets and Φi is a transaction of their initial
registration.

Let Ti be the transaction data object generated by the transaction Φi . Ti consists of
two parts, the data part Ci and the signature part Si , that is,

Ti , Ci | |Si .

In the following subsections, we consider how transaction data objectsTi’s are generated
and registered in the world of BBc-1.

2.1.1 Generation of Data Part Ci

Although the entity who registers a transaction data object could be any participant of
a BBc-1 instance, it is typically a participant executing the transaction or a trusted third
party. Recall that the purpose to register transaction data objects in BBc-1 is to verify
the trust and existence of the transaction Φi transforming Ain,i into Aout,i . Hence
in BBc-1, we shall register the mapping Ain,i

Φi
7−−→ Aout,i and a set of participants Pi

responsible to the transaction Φi , where each p ∈ Pi are typically the owner of each
a ∈ Ain,i . To this end, here we suppose that the mapping Ain,i

Φi
7−−→ Aout,i done by Pi

is represented by the data part Ci defined as the following concatenated data object.

Ci , Ri | |Ei | |IDPi . (1)

The first component Ri of (1) is called a concatenated list of pointers to data parts
Cj’s (j < i) of existing transactions Tj’s in BBc-1 that have previously generatedAin,i .
In particular, Ri can be expressed by

Ri ,
[
H(Cj) : Aout, j ∩ Ain,i , {}, j < i

]
, (2)

where H() is a cryptographic hash function. This implies that hash values H(Cj)’s are
regarded as pointers to Cj’s, and hence H(Cj) is also called a reference to Cj .

The second and third components Ei and IDPi of (1) are an event description and
a list of identities for Pi , respectively. In particular, Ei describes the transaction Φi

yielding Aout,i from Ain,i in the following form.

Ei ,
[
description of event yielding a from Ain,i : a ∈ Aout,i

]
,

2

where an event is defined as an operation generating an asset a ∈ Aout,i from Ain,i .
On the other hand, IDPi is the identities of participants responsible to the transaction
Φi , defined as

IDPi ,
[
IDp : p ∈ Pi

]
,

where IDp represents the identity of p. In other words, IDPi enumerates the subjective
entities who have actually executed the event Ei and generated Aout,i from Ain,i .

We should note that the event description Ei includes any type of description on
Φi generating Aout,i and/or assets themselves (or their pointer) in Aout,i themselves.
Consider the case where Φi is a type of non-reproducible operation only with simple
description, e.g., the case where Ain,i consists of binary files and Φi is their update.
Then, objects in Aout,i or pointers to them must be included in Ei to correctly express
the output of the transaction Φi . In other words, Ei is generated in such a way that
the set of assets Aout,i is correctly obtained from itself or by tracking the sequence
C1,C2, . . . ,Ci with no extra information.

Remark 1. As obviously shown in (2), we include the pointers to previous transac-
tions Tj’s instead of assets in Ain,i themselves. This enables us to easily trace back
transactions related to the assets directly from Ci . �

Example 1. Here we give a simple example. Let X be only a participant to the i-th
transaction, and suppose X updates a PDF data x.pdf registered to a BBc-1 system as
an asset. Then, we set Pi = {X}, and Ain,i and Aout,i are respectively given by

Ain,i = {x.pdf (old)}, and Aout,i = {x.pdf (new)},

where the file name x.pdf represents the file object itself and we have written old/new
to represent the original and update data for the sake of simplicity. Suppose x.pdf is
registered (or updated) at the j-th transaction (j < i), i.e.,

Aout, j ∩ Ain,i = {x.pdf (old)}.

We then have the data part Ci of the transaction data object Ti as

Ci = H(Cj)| |[updated: H(x.pdf (new))]| |IDX,

where we have assumed that the hash value of x.pdf is registered in the system. �

2.1.2 Generation of Signature Part Si

The aim of the signature part Si is to prove that the transaction Ain,i
Φi
7−−→ Aout,i

is computed by the participants. To this end, participants in Pi responsible to the
transaction Φi generates signatures for Ci as follows.

Si ,
[
Sigp(H(Ci)) : p ∈ Pi

]
, (3)

where Sigp() is a signature under p’s private key.

Example 2. Suppose that as Example 1, the owner of x.pdf is X itself. Then we set
Pi = {X} and obtain the transaction data Ti as

Ti = H(Cj)| |[updated: H(x.pdf (new))]| |IDX︸ ︷︷ ︸
=Ci

| |[SigX (H(Ci))].

�

3

TDO TiTDO Ti-2 TDO Ti+2

TDO Ti+3TDO Ti-3

TDO Ti+4

TDO Ti+1TDO Ti-1

TDO Ti+3

Figure 1: Intuitive image of relationship among BBc-1 transaction data objects (referred
to as TDOs), where arrow lines represent references to other transactions

Remark 2. In BBc-1, taking signatures Si from ∀p ∈ Pi can be viewed as obtaining
the consensus to the transaction Φi . We thus see that the consensus mechanism in
BBc-1 is just to request and retrieve participants’ signatures via a certain peer-to-peer
communication between the registrant generating Ti and each of participants. Unlike
Blockchain, no external entity join the consensus phase of BBc-1. �

2.2 Graph-Structured Relationship among Transaction Data
As we described in the previous subsection, a transaction data object Ti has one ore
more pointers to existing ones in its data part Ci . This implies that the relationship
among transaction data objects can be viewed as a directed graph in terms of reference
as intuitively shown in Figure 1. Here we see the directed graph contains no loop since
the references are taken only to chronologically-previous transaction data objects. Note
that if every transaction data object takes only one reference, the relationship can be
viewed as simple (hash) chains.

2.3 Including Cross-References in Transaction Data
BBc-1 has an optional feature to connect a directed graph (see Section 2.2) of trans-
action data objects with other ones, which is called cross-references. In particular, a
transaction data object of BBc-1 can be generated so as to contain hashed data parts of
transaction data objects registered in external graph. The main aim of cross-reference
is to strengthen the tolerance of BBc-1 against impersonation of legitimate participants
to widen the range of references in addition to Ri in (2).

In the system enabling the cross-reference, the transaction data objectTi is generated
as follows. First, suppose that another external transaction data Tm (m < i) would be
referred to by Ti as its cross-reference. We then have the data part Ci in the following
form with the hash of Tm.

Ci = Ri | |Ei | |IDPi | |H(Tm). (4)

We will give an analysis of this sophisticated option of BBc-1 in Section 3.5.

4

3 Security Analysis
Here we present a simple security analysis on BBc-1, and clarify its advantages and
disadvantages in terms of security.

3.1 Security against Attacks against Transaction Data Objects
First we analyze the structure of transaction data objects from the perspective of attacks
against data objects themselves. This subsection does not consider the cross-reference
presented in Section 2.3, and the power of the cross reference will be analyzed in
Section 3.5.

As given in Sections 2.1 and 2.2, they can be viewed just as hash-connected objects
with multiple participants signatures. Here we assume that attackers come from outside
of the BBc-1 system, and that all participants of BBc-1 flawlessly work with the
defined signature and hash-connecting mechanisms. Suppose that malicious attackers
impersonate legitimate participants of the system, and that they want to alter/overwrite a
part of the graph or change the order of objects in the graph. We then see that they need
to generate correct hash values referred by other parts of the directed graph and compute
signatures of legitimate participants. This implies that such security for transaction data
objects itself just depends on the adopted hash and signature algorithms.

Nextwe consider a casewhere a participant(s)maliciously behaves about transaction
data objects. Assume that the attacker(s) tries to remove all successive data objects from
a certain point in the graph, and connects new fake data objects with the point instead
of removed objects. Recall that basically in BBc-1, any transaction data objects are
redundantly stored in multiple BBc-1 node, or else every node stores all the transaction
data objects of the system (in small cases). This first implies that suchmalicious removal
of the data objects is never possible except the case where all participants betray and
collude with one another. On the other hand, this also means that the attacker is allowed
to append new transaction data objects to any point of the directed graph since it is a
legitimate participant. Herewe recall that BBc-1 requires signatures of participants who
responsible to the transaction and assets in the generation of transaction data objects
as in Section 2.1. Hence if the attacker wants to maliciously append transaction data
objects corresponding to other participants’ assets, it needs to generate fake signatures
of them. We thus conclude that this type of attacker is allowed to append data objects
corresponding only to its asset itself, and that it has no undesirable effect in the system.

As shown in the above, the transaction data objects themselves and the hash-based
connection are securely protected from attackers if adopted cryptographic algorithms
are secure. In the following subsections, we will give analyses on attacks against the
system of BBc-1.

3.2 Sybil Attack
Next we consider the security of BBc-1 system against Sybil attack, i.e., the case where
there exist numbers of malicious participants colluding with each other. Considering
the ‘random’ pick-up of signers Pi in the consensus phase, BBc-1 has the following
vulnerability against Sybil attack. In this case, no legitimate participant might be
included in Pi , and then attackers can collude and append fake signatures that cannot be
correctly verified later. This means we cannot guarantee the integrity of registered data.
Also, fake assets and fake transactions might be registered with attackers’ signatures.

5

Protection from this type of attack is out-of-focus of BBc-1, and we obviously see
that these can be avoided by applying protection mechanisms in overlaid applications of
BBc-1. For example, applications can restricts users to register their underlying BBc-1
system using their external certificates, and applications can be designed so as to choose
signers with authenticating signers in the consensus phase. We should note that even in
this case, attackers cannot impersonate legitimate participants as long as their private
(signature) keys are not leaked to attackers.

3.3 Denial-of-Service Attack
Denial-of-Service (DoS) attack is a classical problem of computer systems, and BBc-1
may suffer from the attack if its overlaid application has no countermeasure against the
attack. One possible scenario of DoS to BBc-1 is that malicious attackers simultane-
ously register huge numbers of transaction data within a short period. Then directed
graphs could be incredibly lengthened/expanded and the data size of BBc-1 system
grows at unusually-rapid speed. This could finally make the system inaccessible due
to huge consumption of storage and network bandwidth. We thus see that applications
should be designed in such a way that the overall system is protected from this type
of DoS attack. For example for a closed system, we can easily avoid this problem by
authenticating registrants at the application layer. For an open system, we can also limit
the number of registration of transaction data per a certain unit time.

3.4 Fault Tolerance
We see that in a similar manner to the Blockchain-like mechanism, BBc-1 is basically
secure against destruction of data since transaction data objects are redundantly dis-
tributed among participant nodes. This implies that transaction data can be correctly
queried and is available even if some of participant nodes are not accessible from users.
On the other hand, consider the phase to update of a directed graph in BBc-1, i.e.,
append a new transaction data object to the graph. Here we recall that Pi is a set of
participants responsible to the transaction itself and typically a set of owners of assets in
Ain,i and Aout,i . We thus see that if an entity in the participant set Pi is inaccessible,
we cannot complete the transaction data object due to the lack of signatures in the
signature part Si in (3), and the directed graph is not updated. From this observation,
the overlaid application of BBc-1 must be designed so as to guarantee the accessibility
to legitimate participants in Pi in the generation of a transaction data object. Otherwise
in a relaxed security regime, the overlaid application should approve only transaction
data objects containing more valid signatures than a certain threshold.

3.5 Power of Cross-Reference
Here we briefly analyze the optional feature of BBc-1, i.e., cross-reference defined in
Section 2.3.

As mentioned in Section 2.3, the first aim of the cross-reference is to enhance the
tolerance of BBc-1 against malicious alternation of transaction data objects in directed
graphs. This is obviously guaranteed since the reference in a transaction data object
is not only Ri but also H(Tm) as in (4). Even if an attacker successfully altered whole
directed graphs including Tm, the malicious behaviour can be immediately detected by
verifying hash values included in Ti . Namely, the attacker has to successfully forge
multiple graphs in order to achieve its purpose. Consider the case where multiple

6

independent organizations employ distinct BBc-1 systems and mutually connect them
via cross-references through secure API exposing some hash values of transaction data
objects. We then see that it is unrealistic for an attacker to compromise one BBc-1
system of a company since the attacker must also compromise systems of all other
companies.

References
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” https://
bitcoin.org/bitcoin.pdf, Nov. 2008.

[2] K. Saito and T. Kubo, “BBc-1: Beyond blockchain one.” https://
beyond-blockchain.org/public/bbc1-design-paper.pdf, Oct. 2017.

7

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://beyond-blockchain.org/public/bbc1-design-paper.pdf
https://beyond-blockchain.org/public/bbc1-design-paper.pdf

	Introduction
	Formal Expression of Transaction in BBc-1
	Basic Flow to Generate Transaction Data
	Generation of Data Part Ci
	Generation of Signature Part Si

	Graph-Structured Relationship among Transaction Data
	Including Cross-References in Transaction Data

	Security Analysis
	Security against Attacks against Transaction Data Objects
	Sybil Attack
	Denial-of-Service Attack
	Fault Tolerance
	Power of Cross-Reference

