
BBc-1 : Beyond Blockchain One
- An Architecture for Promise-Fixation Device in the Air -

Kenji Saito and Takeshi Kubo
{ks91|t-kubo}@beyond-blockchain.org

Revision 0.2 – December 11, 2018

1 Introduction

1.1 Background and Overview

Blockchain technology today has some sustainability risks including cryp-
tographic techniques being used becoming obsolete and the price of native
cryptocurrency declining (thus miners and/or validators get incentivized to
leave). There are also other technological problems and problems of techni-
cal governance, involving political situations surrounding development com-
munities and miners/validators.

BBc-1 (Beyond Blockchain One) is a kind of “middleware” to give long
term solutions to these problems, and at the same time to provide support
for currently ongoing application development. It is designed to implement
requirements specified in “BBc Trust”1, and is being developed as a set of
open protocols and open source reference software that implement them, ob-
tainable and usable for free2. We are in the process of forming a global open
community, beyond-blockchain.org, a non-profit organization of corporations
and individuals who will keep working on this project together.

1.2 Basic Design Principles

Figure 1 shows an overview of the BBc-1 architecture.
Today, major applications of blockchains can be categorized into two:

currencies (systems for transferring quantities) and assets (systems for prove-
nance and managing rights). BBc-1 will support both, and provide API (the
interface between the ledger core and the application layer) and SDK (set
of libraries that run within the application layer) for these.

Notably, BBc-1 provides the following facilities for application develop-
ment:

1Our charter. Found at https://beyond-blockchain.org/public/bbc-trust.pdf
2 GitHub repository is found at https://github.com/beyond-blockchain/bbc1

1

Bitcoin

BBc-1 Core

ledger-subsystem

Applications

Many other

application

possibilities

bbc1-lib-std

BBc-1development items

L
o

c
a

l C
u

rre
n

c
y

P
o

in
ts

R
e

c
o

rd
 T

ra
c

k
in

g

…

Initially depends
proof-of-existence on

(anchoring)

Existing databases can be used

for storing ledger entries

sqlite / MySQL / other DB

BBc-1
bbc1-lib-tokens others (registry, tickets, etc.)

• bbc1-lib-std : common functionality library

• bbc1-lib-tokens : currency library

Figure 1: BBc-1 Architecture

1. Ease of design through larger freedom of expressing relations among
information.

2. Commitment of transactions is made through consensus among con-
cerned parties instead of third-party validators.

3. Improved detections of falsification.

BBc-1 provides proofs (or disproofs) of transactions to applications.
Initially, it is done by utilizing proof-of-existence functionality of existing
blockchains. A blockchain to be used for this purpose can be dynamically
chosen.

The abstraction layer for blockchains will evolve so that it will work
without underlying public ledgers in the near future. In the end, we aim to
replace blockchains themselves with BBc-1.

2 Understanding Blockchains

2.1 Functional Layer Model

What blockchains or other kinds of distributed ledgers do can be understood
in terms of functional layers as follows (in the lower-layer-first order):

2

1. Guarantee of Validity (of transactions)

• The ledger guarantees that a new transaction cannot be mutated,
does not contradict with the existing history of transactions, and
is committed by a user or users who have right to do so.

• The ledger also guarantees that nobody can stop a user or users
who have right to do so to commit a new valid transaction.

2. Proof of Existence (of transactions)

• The ledger provides the proof of existence of a transaction.
• The ledger does not allow anyone to delete the evidence of a

transaction committed in the past, or to fabricate an evidence of
a transaction that has never been committed in the past.

3. Consensus on Uniqueness (of transactions)

• If two contradicting transactions were to be committed, all users
of the ledger (will eventually) see the same one of them in their
views of the correct history of transactions.

4. Descriptions of Rules (that define semantics of transactions)

• The ledger allows users to define semantics of transactions. (In
Bitcoin, all transactions are basically about sending bitcoins.)

By providing these functions, a blockchain or any ledger system can
act as a “promise-fixation device in the air”, in which nobody can deny the
content or existence of committed promises or records whose validity anyone
can verify, and nobody can stop legitimate users to commit or verify such
promises or records.

The true value of such a device is that it provides proof that a digital
signature situated in the past is either valid or invalid.

2.2 The Last Will Test

The Last Will Test can test whether a designed ledger system such as
blockchains can completely function as a “promise-fixation device in the
air”. Here is what the test asks:

Can your ledger system be used for saving a person’s last
will and testament, so that you can provide proof for all
interested heirs that the document is kept as-is after digitally
signed by the person, without asking them to trust you?

3

This test is meaningful because the private key is no longer private after
the person dies, and there generally is a reasonable doubt that a heir or
heirs has found the key, rewritten and signed the document with the found
key, and replaced the stored document with support from you, the operator
of the ledger system.

Many private or consortium ledgers would fail this test (unless all heirs
are members of the consortium), because they do not provide external
proofs.

Many public ledgers, on the other hand, would pass this test for the
time being, but they may stop functioning at any time due to some external
reasons mainly concerning the prices of their native cryptocurrencies.

Our aim is to design BBc-1 as a ledger system to pass this test beyond
reasonable doubt, and provide a reference implementation of the software.

3 Features

We will describe features of BBc-1 in terms of each layer above.

3.1 Guarantee of Validity

BBc-1 uses a data structure similar to so-called UTXO (Unspent Transaction
Output) structure used in Bitcoin and alike, because of its ease of under-
standing and of accounting, but the data structure also allows state-tracking.
Therefore, both UTXO and state machine approaches, two common basic
structures of ledger systems, can be used with BBc-1.

To support confidentiality of transactions, BBc-1 works over inter-connected
multiple domains of networks, where the content of transactions, including
identities of involved parties, is visible only within each domain (digital
assets handled in transactions can be encrypted to further support confi-
dentiality).

Figure2 shows the structure of a BBc-1 transaction data, where

Header section contains meta-data of the transaction such as timestamp,

Events section can contain set of operations over assets as outputs of the
transaction, and also specifies the parties who can perform further
operations over the assets,

References section can contain references to past events and indications
of <signature, public key> pairs in the signatures section as the proof
of identities,

Relations section can contain general references to past related transac-
tions,

4

Header

Intermediate Digest

Events

References

Relations

Witnesses

Cross-Ref

Cross-Ref
transaction ID

Signatures

These are used for verifying the existence

of the cross-referenced transactions.

It is extremely difficult to forge such data

that produces a specified transaction ID

and contains indicated identifiers to be

verified in the Cross-Ref section.

Signatures

cannot be

verified

outside a domain

(because validity of public key is

 unknown)

Figure 2: Structure of a BBc-1 Transaction Data

Witnesses section can contain identifiers of designated signers for this
transaction,

Cross-Ref section can contain the identifiers of transactions (or set of
transactions) from different domains that this transaction provides
proof of existence, and

Signatures section contains a set of <signature, public key> pairs that
sign the identifier of this transaction.

Blockchains today generally use the digest of a public key as an identifier
of an external actor. This means that if the corresponding private key is
lost, proving the identity of the user by digital signature will no longer be
possible, and the user loses control of coins or assets forever.

BBc-1 advances solutions to this problem by separating identifiers and
sets of public keys, as shown in Figure 3, for example (it is applications’
responsibility how this separation is actually designed).

In this example, which is implemented in bbc1-lib-std, or the common
functionality library, the binding between an identifier and a set of pub-
lic keys is stored in the ledger itself (therefore, the binding is visible only
within the domain, and the signatures cannot be verified outside the do-
main). When verifying a digital signature, a verifier sees whether the spec-
ified public key is bound to the addressed identifier on the ledger or not.

5

A
A

No

reference

Signatures

section

TX
Addressed

to A

Used for signing

Can be abandoned later

Pairs

used for verifying

Digest of

the public key

must equal the

identifier in

question

A’ s private key
A’ s private keys

A’ s public keys

A’ s identifier

A’s identifier

Addressed

party

that can

alter the

bindng

bound

Multi-signature can

also be used

A’ s public key

A’ s

signature

Event

(initial bind)

public key digest

* An identifier is the digest of a public key, whose pairing private key must be used
for signing the TX that initially binds the identifier and public keys.

Figure 3: Separation of Identifier and Public Keys (in bbc1-lib-std)

3.2 Proof of Existence

At least in the initial stage of development of BBc-1, a proof of existence
of a transaction is performed by checking the root of a Merkle tree written
onto a public blockchain as illustrated in Figure 4, as commonly practiced
in blockchain applications.

However, problems of proof of work or proof of stake, methods used in
public blockchains for protecting such systems from undetected falsification,
are that their safety and liveness depend on the market values of their native
cryptocurrencies paid as rewards and/or used for reserving voting rights.

Instead of these techniques, we will use proof of context, or a cross-
reference method in which a transaction provides proof of existence to a
set of non-related past transactions in an unrelated domain by containing
their identifiers in the cross-ref section of the transaction data (Figure 5).
This type of technique is often referred to as DAG3, because it forms a

3We believe that this is a misleading term, because directed acyclic graphs are seen
everywhere in the structures of a ledger system.

6

Blockchain

Public Space

User

Proof of Existence and/or Provenance Service

M
e

rk
le

 T
re

e

Merkle Root

Obtain

subtree

Search for the

Merkle Root

Embed

… …

record1 record2 record3 record4

digest

digest

digest

digest digest digest

API

digest

- Tens of thousands of records can form a Merkle tree,

 in which case the height still remains 10-15.

- To prove existence of record1, only subtree shown

 in blue is required to reproduce the Merkle root.

Figure 4: Proof of Existence Scheme using a Blockchain

directed acyclic graph of reference relations. In BBc-1, these cross-references
are performed among transactions in unrelated domains (and thus among
different contexts), to minimize possibilities of colluding to alter records.

Moreover, by having timestamp services trusted and chosen by each ap-
plication periodically committing time-defining transactions, general trans-
actions can be proven to have existed in some bounded real-time in the
past. In return, those timestamp services can be protected against fraud
themselves by taking part in the system of proof of context (again, Figure
5).

3.3 Consensus on Uniqueness

It has been well known by now that blockchains do not actually achieve
consensus, through some enlightenment efforts or real cases and risks of
hard-forking events and block-withholding attacks, for example.

This problem, we believe, is due to a design fault in which possibility
of consensus among undefined participants is pursued, which we believe is
impossible.

In Bitcoin, for example, coins are purely assets, without being backed
by any debts. This means that when a coin is double-spent (thus the value
is copied and doubled), it is unclear who is at a disadvantage. This in turn
requires such a design that the whole participants as a group must agree
on the uniqueness of transactions, which we know is impossible because we

7

Timer

TX

Cross-Ref

section

Timer

TX

Cross-Ref

section

TX

Domain A

(time stamp service domain)

Domain B

Domain C

Cross-Ref

section

TX

Cross-Ref

section

TX

Cross-Ref

section

TX

Cross-Ref

section

Time

Trusted time stamp services periodicaly commit timer TXs

refer

Proven to have

happened before t1

Proven to have

happened after t1

Proven to have happened

between t1 and t2

Being referred to, existence of

timer TXs are also proven

refer

refer

maybe causally related

refer

refer

Time t1 Time t2

refer

• “refer” can be to contain the identifiers of the referred domain and transaction
themselves, or to contain the identifier of the referred domain and the root of a
hash tree where the identifier of the referred transaction is contained.

Figure 5: Proof of Existence of Transactions and its Time

cannot even define “the whole” in an open environment.
On the other hand, if a coin or an asset is a representation of some debt

and there is a specific debtor, or if there is specific someone responsible for
the asset, then it is clear where the motivation lies to assure the uniqueness
of transactions.

Based on this thought, in BBc-1, addressing of payment or transfer of
rights is generally specified with multiple signature requests, where a trans-
action requires a signature of the debtor or the responsible party in addition
to that of the current holder to get committed (this design is not enforced
by the ledger core, but applied as needed by applications). This might mean
that the debtor or the responsible party is a single point of failure, but we
believe that it can be handled by existing replication techniques with re-
dundancy and consensus. In BBc-1, because identifiers and public keys are
separated, the requests to debtors for signing can be anycasts (any signature
will do as long as it is verified with a public key bound to the identifier in
question). This means that each redundant node can have its own signing
private key, and the first one to receive the request and to sign can be the
proposer in the consensus protocol to be used, such as (Byzantine) Paxos.

8

3.4 Descriptions of Rules

In the future, BBc-1 may allow users to define smart contracts4 with lan-
guages designed for that purpose, but the mechanism for it is now in the
process of being designed.

At least in the initial stage of development of BBc-1, applications will
have to include their own logic to define and interpret the semantics of
transactions they handle. We provide an SDK for the purpose.

3.5 Networking

Detailed descriptions of our intra-domain and inter-domain networking will
appear.

4 Design Tasks

The following is the list of design tasks for us to work on:

• Enrichment of the SDK that include the common functionality includ-
ing identifier-public keys separation, applicable replication techniques
for redundant signing actors, etc., digital currencies, general ticketing,
and general registry tasks.

• An efficient way to confirm the proof of existence using proof of con-
text, or the cross-reference technique.

• Mechanism and languages for smart contracts (running program code
as an asset).

• Incentives for nodes to form a domain to provide proof-of-context ser-
vices (probably better not to depend on issuing coins; but rather a
tit-for-tat mechanism that disallows BBc-1 proof-of-context services
to those who do not really participate in the inter-domain network).

Revision History

Rev.0.1 2017-10-31 Initial revision
Rev.0.2 2018-12-11 General update to accommodate ongoing design

— End of Document —

4 A smart contract is a piece of program code whose validity and existence is assured
so that users can be certain that it has not been modified after deployment.

9

